Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8186, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589457

RESUMO

We address the high accuracy and precision demands for analyzing large in situ or in operando spectral data sets. A dual-input artificial neural network (ANN) algorithm enables the compositional and depth-sensitive analysis of multinary materials by simultaneously evaluating spectra collected under multiple experimental conditions. To validate the developed algorithm, a case study was conducted analyzing complex Rutherford backscattering spectrometry (RBS) spectra collected in two scattering geometries. The dual-input ANN analysis excelled in providing a systematic analysis and precise results, showcasing its robustness in handling complex data and minimizing user bias. A comprehensive comparison with human supervision analysis and conventional single-input ANN analysis revealed a reduced susceptibility of the dual-input ANN analysis to inaccurately known setup parameters, a common challenge in material characterization. The developed multi-input approach can be extended to a wide range of analytical techniques, in which the combined analysis of measurements performed under different experimental conditions is beneficial for disentangling details of the material properties.

2.
Nature ; 617(7962): 706-710, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37225880

RESUMO

The radionuclide thorium-229 features an isomer with an exceptionally low excitation energy that enables direct laser manipulation of nuclear states. It constitutes one of the leading candidates for use in next-generation optical clocks1-3. This nuclear clock will be a unique tool for precise tests of fundamental physics4-9. Whereas indirect experimental evidence for the existence of such an extraordinary nuclear state is substantially older10, the proof of existence has been delivered only recently by observing the isomer's electron conversion decay11. The isomer's excitation energy, nuclear spin and electromagnetic moments, the electron conversion lifetime and a refined energy of the isomer have been measured12-16. In spite of recent progress, the isomer's radiative decay, a key ingredient for the development of a nuclear clock, remained unobserved. Here, we report the detection of the radiative decay of this low-energy isomer in thorium-229 (229mTh). By performing vacuum-ultraviolet spectroscopy of 229mTh incorporated into large-bandgap CaF2 and MgF2 crystals at the ISOLDE facility at CERN, photons of 8.338(24) eV are measured, in agreement with recent measurements14-16 and the uncertainty is decreased by a factor of seven. The half-life of 229mTh embedded in MgF2 is determined to be 670(102) s. The observation of the radiative decay in a large-bandgap crystal has important consequences for the design of a future nuclear clock and the improved uncertainty of the energy eases the search for direct laser excitation of the atomic nucleus.

3.
ACS Photonics ; 10(1): 101-110, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36691430

RESUMO

We provide the first systematic characterization of the structural and photoluminescence properties of optically active centers fabricated upon implantation of 30-100 keV Mg+ ions in synthetic diamond. The structural configurations of Mg-related defects were studied by the electron emission channeling technique for short-lived, radioactive 27Mg implantations at the CERN-ISOLDE facility, performed both at room temperature and 800 °C, which allowed the identification of a major fraction of Mg atoms (∼30 to 42%) in sites which are compatible with the split-vacancy structure of the MgV complex. A smaller fraction of Mg atoms (∼13 to 17%) was found on substitutional sites. The photoluminescence emission was investigated both at the ensemble and individual defect level in the 5-300 K temperature range, offering a detailed picture of the MgV-related emission properties and revealing the occurrence of previously unreported spectral features. The optical excitability of the MgV center was also studied as a function of the optical excitation wavelength to identify the optimal conditions for photostable and intense emission. The results are discussed in the context of the preliminary experimental data and the theoretical models available in the literature, with appealing perspectives for the utilization of the tunable properties of the MgV center for quantum information processing applications.

4.
Mater Horiz ; 10(1): 88-96, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36305823

RESUMO

Magneto-ionics, which deals with the change of magnetic properties through voltage-driven ion migration, is expected to be one of the emerging technologies to develop energy-efficient spintronics. While a precise modulation of magnetism is achieved when voltage is applied, much more uncontrolled is the spontaneous evolution of magneto-ionic systems upon removing the electric stimuli (i.e., post-stimulated behavior). Here, we demonstrate a voltage-controllable N ion accumulation effect at the outer surface of CoN films adjacent to a liquid electrolyte, which allows for the control of magneto-ionic properties both during and after voltage pulse actuation (i.e., stimulated and post-stimulated behavior, respectively). This effect, which takes place when the CoN film thickness is below 50 nm and the voltage pulse frequency is at least 100 Hz, is based on the trade-off between generation (voltage ON) and partial depletion (voltage OFF) of ferromagnetism in CoN by magneto-ionics. This novel effect may open opportunities for new neuromorphic computing functions, such as post-stimulated neural learning under deep sleep.


Assuntos
Encéfalo , Elementos de Transição , Fenômenos Físicos , Aprendizagem , Eletricidade , Frequência Cardíaca
5.
Sci Rep ; 12(1): 17770, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36272993

RESUMO

We present a site-specific elemental analysis of nano-scale patterns whereby the data acquisition is based on Rutherford backscattering spectrometry (RBS). The analysis builds on probing a large ensemble of identical nanostructures. This ensures that a very good limit of detection can be achieved. In addition, the analysis exploits the energy loss effects of the backscattered ions within the nanostructures to distinguish signals coming from different locations of the nanostructures. The spectrum deconvolution is based on ion-trajectory calculations. With this approach, we analyse the Ru area-selective deposition on SiO2-TiN line-space patterns with a linewidth of 35 nm and a pitch of 90 nm. We quantify the selectivity and the Ru local areal density on the top versus on the sidewall of the SiO2 lines. The sensitivity to probe ruthenium deposited on the various surfaces is as low as 1013 atoms/cm2. The analysis is quantitative, traceable, and highly accurate thanks to the intrinsic capabilities of RBS.

6.
J Am Chem Soc ; 143(11): 4290-4301, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33710882

RESUMO

Colloidal quantum dots (QDs) made from In-based III-V semiconductors are emerging as a printable infrared material. However, the formulation of infrared inks and the formation of electrically conductive QD coatings is hampered by a limited understanding of the surface chemistry of In-based QDs. In this work, we present a case study on the surface termination of IR active III-V QDs absorbing at 1220 nm that were synthesized by reducing a mixture of indium halides and an aminoarsine by an aminophosphine in oleylamine. We find that this recently established synthesis method yields In(As,P) QDs with minor phosphorus admixing and a surface terminated by a mixture of oleylamine and chloride. Exposing these QDs to protic surface-active compounds RXH, such as fatty acids or alkanethiols, initiates a ligand exchange reaction involving the binding of the conjugate base RX- and the desorption of 1 equiv of alkylammonium chloride. Using density functional theory simulations, we confirm that the formation of the alkylammonium chloride salt can provide the energy needed to drive such acid/base mediated ligand exchange reactions, even for weak organic acids such as alkanethiols. We conclude that the unique surface termination of In(As,P) QDs, consisting of a mixture of L-type and X-type ligands and acid/base mediated ligand exchange, can form a general model for In-based III-V QDs synthesized using indium halides and aminopnictogens.

7.
Sci Rep ; 10(1): 5729, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235906

RESUMO

The increase in superconducting transition temperature (TC) of Sn nanostructures in comparison to bulk, was studied. Changes in the phonon density of states (PDOS) of the weakly coupled superconductor Sn were analyzed and correlated with the increase in TC measured by magnetometry. The PDOS of all nanostructured samples shows a slightly increased number of low-energy phonon modes and a strong decrease in the number of high-energy phonon modes in comparison to the bulk Sn PDOS. The phonon densities of states, which were determined previously using nuclear resonant inelastic X-ray scattering, were used to calculate the superconducting transition temperature using the Allen-Dynes-McMillan (ADMM) formalism. Both the calculated as well as the experimentally determined values of TC show an increase compared to the bulk superconducting transition temperature. The good agreement between these values indicates that phonon softening has a major influence on the superconducting transition temperature of Sn nanostructures. The influence of electron confinement effects appears to be minor in these systems.

8.
J Phys Chem Lett ; 10(17): 5206-5210, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31436422

RESUMO

Copper is the conventional, broadly applied anode current collector in lithium-ion batteries, because Li does not form intermetallic alloys with Cu at room temperature. Fast diffusion and trapping of lithium in copper were, however, suggested in the past, and the involved diffusion mechanisms are still not clarified. By using three complementary methods, we determine grain boundary and lattice diffusion of lithium in copper. We show that indiffusion into copper is possible not only from metallic lithium deposits at the surface but also from a Li+-containing electrolyte. Lattice diffusion (D0 = 3.9 × 10-9 cm2/s; Ea = 0.68 eV) and grain boundary diffusion (D0 = 1.5 × 10-11 cm2/s; Ea = 0.36 eV) are found to be 13 orders of magnitude lower than previously published. Furthermore, for practical Li-ion battery considerations, lithium trapping in copper current collectors, which relies heavily on operating temperature and morphology, is discussed.

9.
Nanoscale ; 11(4): 1626-1635, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30644952

RESUMO

Bactericidal nanoparticle coatings are very promising for hindering the indirect transmission of pathogens through cross-contaminated surfaces. The challenge, limiting their employment in nosocomial environments, is the ability of tailoring the coating's physicochemical properties, namely, composition, cytotoxicity, bactericidal spectrum, adhesion to the substrate, and consequent nanoparticles release into the environment. We have engineered a new family of nanoparticle-based bactericidal coatings comprising Ag, Cu, and Mg and synthesized by a green gas-phase technique. These coatings present wide-spectrum bactericidal activity on both Gram-positive and Gram-negative reference strains and tunable physicochemical properties of relevance in view of their "on-field" deployment. The link between material and functional properties is rationalized based on a multidisciplinary and multitechnique approach. Our results pave the way for engineering biofunctional, fully tunable nanoparticle coatings, exploiting an arbitrarily wide number of elements in a straightforward, eco-friendly, high-throughput, one-step process.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células HeLa , Humanos , Magnésio/química , Testes de Sensibilidade Microbiana , Porosidade , Prata/química , Propriedades de Superfície
10.
J Phys Chem Lett ; 9(11): 3093-3097, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29790351

RESUMO

Inductively coupled plasma mass spectrometry (ICP-MS) was combined with UV-vis absorption spectroscopy and transmission electron microscopy to determine the size, composition, and intrinsic absorption coefficient µi of 4 to 11 nm sized colloidal CsPbBr3 nanocrystals (NCs). The ICP-MS measurements demonstrate the nonstoichiometric nature of the NCs, with a systematic excess of lead for all samples studied. Rutherford backscattering measurements indicate that this enrichment in lead concurs with a relative increase in the bromide content. At high photon energies, µi is independent of the nanocrystal size. This allows the nanocrystal concentration in CsPbBr3 nanocolloids to be readily obtained by a combination of absorption spectroscopy and the CsPbBr3 sizing curve.

11.
Nanoscale ; 10(12): 5574-5580, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29521386

RESUMO

Correlations were established between the hyperfine field distribution around the Fe atoms, the multiferroic properties, and the high magnetoelectric coefficient in BaTiO3-BiFeO3 multilayer stacks with variable BiFeO3 single layer thickness, down to 5 nm. Of key importance in this study was the deposition of 57Fe - enriched BiFeO3, which enhances the sensitivity of conversion electron Mössbauer spectroscopy by orders of magnitude. The magnetoelectric coefficient αME reaches a maximum of 60.2 V cm-1 Oe-1 at 300 K and at a DC bias field of 2 Tesla for a sample of 15 × (10 nm BaTiO3-5 nm BiFeO3) and is one of the highest values reported so far. Interestingly, the highest αME is connected to a high asymmetry of the hyperfine field distribution of the multilayer composite samples. The possible mechanisms responsible for the strong magnetoelectric coupling are discussed.

12.
Nat Commun ; 8(1): 1074, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057871

RESUMO

Synthetic methods that allow for the controlled design of well-defined Pt nanoparticles are highly desirable for fundamental catalysis research. In this work, we propose a strategy that allows precise and independent control of the Pt particle size and coverage. Our approach exploits the versatility of the atomic layer deposition (ALD) technique by combining two ALD processes for Pt using different reactants. The particle areal density is controlled by tailoring the number of ALD cycles using trimethyl(methylcyclopentadienyl)platinum and oxygen, while subsequent growth using the same Pt precursor in combination with nitrogen plasma allows for tuning of the particle size at the atomic level. The excellent control over the particle morphology is clearly demonstrated by means of in situ and ex situ X-ray fluorescence and grazing incidence small angle X-ray scattering experiments, providing information about the Pt loading, average particle dimensions, and mean center-to-center particle distance.

13.
Small ; 13(11)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28067997

RESUMO

The combination of lithography and ion implantation is demonstrated to be a suitable method to prepare lateral multilayers. A laterally, compositionally, and magnetically modulated microscale pattern consisting of alternating Co (1.6 µm wide) and Co-CoO (2.4 µm wide) lines has been obtained by oxygen ion implantation into a lithographically masked Au-sandwiched Co thin film. Magnetoresistance along the lines (i.e., current and applied magnetic field are parallel to the lines) reveals an effective positive giant magnetoresistance (GMR) behavior at room temperature. Conversely, anisotropic magnetoresistance and GMR contributions are distinguished at low temperature (i.e., 10 K) since the O-implanted areas become exchange coupled. This planar GMR is principally ascribed to the spatial modulation of coercivity in a spring-magnet-type configuration, which results in 180° Néel extrinsic domain walls at the Co/Co-CoO interfaces. The versatility, in terms of pattern size, morphology, and composition adjustment, of this method offers a unique route to fabricate planar systems for, among others, spintronic research and applications.

14.
J Phys Condens Matter ; 28(19): 196002, 2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-27092595

RESUMO

The interplay between magnetocrystalline anisotropy and exchange bias is investigated in CoO/Co bilayer films, which are grown epitaxially on MgO (0 0 1), by magnetization reversal measurements based on the anisotropic magnetoresistance (AMR) effect. While an asymmetric magnetization reversal survives after training for cooling field (CF) along the hard axis, the magnetization reversal becomes symmetric and is dominated in both branches of the hysteresis loop by domain wall motion before and after training for CF along the easy axis. When performing an in-plane hysteresis loop perpendicular to the CF, the hysteresis loop along the easy axis becomes asymmetric: magnetization rotation dominates in the ascending branch, while there is a larger contribution of domain wall motion in the descending branch. Furthermore, the azimuthal angular dependence of the AMR shows two minima after performing a perpendicular hysteresis loop, instead of only one minimum after training. Relying on the extended Fulcomer and Charap model, these effects can be related to an increased deviation of the average uncompensated antiferromagnetic magnetization from the CF direction. This model provides a consistent interpretation of training and asymmetry of the magnetization reversal for epitaxial films with pronounced magnetocrystalline anisotropy as well as for the previously investigated polycrystalline films.

15.
Materials (Basel) ; 9(1)2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28787843

RESUMO

Epitaxial multiferroic BaTiO3-BiFeO3 composite thin films exhibit a correlation between the magnetoelectric (ME) voltage coefficient αME and the oxygen partial pressure during growth. The ME coefficient αME reaches high values up to 43 V/(cm·Oe) at 300 K and at 0.25 mbar oxygen growth pressure. The temperature dependence of αME of the composite films is opposite that of recently-reported BaTiO3-BiFeO3 superlattices, indicating that strain-mediated ME coupling alone cannot explain its origin. Probably, charge-mediated ME coupling may play a role in the composite films. Furthermore, the chemically-homogeneous composite films show an oxygen vacancy superstructure, which arises from vacancy ordering on the {111} planes of the pseudocubic BaTiO3-type structure. This work contributes to the understanding of magnetoelectric coupling as a complex and sensitive interplay of chemical, structural and geometrical issues of the BaTiO3-BiFeO3 composite system and, thus, paves the way to practical exploitation of magnetoelectric composites.

16.
ACS Nano ; 8(8): 7948-57, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25090034

RESUMO

We link the extent of Pb for Cd cation exchange reactions in PbS colloidal quantum dots (QDs) to their surface chemistry. Using PbS QDs with either a full or a partial surface coverage by excess Pb, we demonstrate the central role played by vacant cation sites on the QD surface. They facilitate the adsorption of cations from solution, and they act as a source of vacancies needed for the transport of cations through the crystal lattice. This model explains our finding that the cation exchange reaction runs to completion when using a low Cd excess in the exchange bath, while it is impeded by a high Cd excess. Whereas in the latter case, the QD surface is poisoned by surface Cd, the former conditions provide the mixture of surface Cd and vacant surface sites the exchange reaction needs to proceed. This understanding provides a missing link needed to build a unifying mechanistic picture of cation exchange reactions at nanocrystals.

17.
ACS Appl Mater Interfaces ; 5(20): 10118-26, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24028676

RESUMO

Ferromagnetic single crystalline [100], [110], and [111]-oriented expanded austenite is obtained by plasma nitriding of paramagnetic 316L austenitic stainless steel single crystals at either 300 or 400 °C. After nitriding at 400 °C, the [100] direction appears to constitute the magnetic easy axis due to the interplay between a large lattice expansion and the expected decomposition of the expanded austenite, which results in Fe- and Ni-enriched areas. However, a complex combination of uniaxial (i.e., twofold) and biaxial (i.e., fourfold) in-plane magnetic anisotropies is encountered. It is suggested that the former is related to residual stress-induced effects while the latter is associated to the in-plane projections of the cubic lattice symmetry. Increasing the processing temperature strengthens the biaxial in-plane anisotropy in detriment of the uniaxial contribution, in agreement with a more homogeneous structure of expanded austenite with lower residual stresses. In contrast to polycrystalline expanded austenite, single crystalline expanded austenite exhibits its magnetic easy axes along basic directions.

18.
ACS Appl Mater Interfaces ; 5(10): 4320-7, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23581246

RESUMO

Oxygen implantation in ferromagnetic Co thin films is shown to be an advantageous route to improving the magnetic properties of Co-CoO systems by forming multiple nanoscaled ferromagnetic/antiferromagnetic interfaces homogeneously distributed throughout the layer. By properly designing the implantation conditions (energy and fluence) and the structure of the films (capping, buffer, and Co layer thickness), relatively uniform O profiles across the Co layer can be achieved using a single-energy ion implantation approach. This optimized configuration results in enhanced exchange bias loop shifts, improved loop homogeneity, increased blocking temperature, reduced relative training effects and increased retained remanence in the trained state with respect to both Co/CoO bilayers and O-implanted Co films with a Gaussian-like O depth profile. This underlines the great potential of ion implantation to tailor the magnetic properties by controllably modifying the local microstructure through tailored implantation profiles.

19.
Phys Chem Chem Phys ; 15(5): 1675-81, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23247091

RESUMO

The poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) micelle route is a well established method for the preparation of bimetallic nanoparticles used for the catalysis of carbon nanotubes and other applications like ultrahigh density storage devices, yet to date no information is available concerning the internal structure of the P2VP-metal salt complex. For the first time, XAFS measurements were performed on micelles loaded with either iron(III) chloride or molybdenum(V) chloride and a combination of both. Analysis of the data revealed that iron is tetrahedrally coordinated within the core, whereas molybdenum is octahedrally coordinated in the pure loaded micelles and trigonally coordinated in the mixed micelles. For the bimetallic samples, analysis of the Fe and Mo K-edge data revealed the existence of an interaction between iron and molybdenum. This approach to obtain detailed structural information during the preparation of these catalyst samples will allow for a deeper understanding of the effects of structure on the function of catalysts used for CNT growth i.e. to explain differences in yield as well as potentially providing a deeper understanding of the CNT growth mechanism itself.

20.
Phys Chem Chem Phys ; 14(39): 13624-9, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22872155

RESUMO

In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.


Assuntos
Cobre/química , Líquidos Iônicos/química , Óxidos/química , Tantálio/química , Galvanoplastia , Estrutura Molecular , Propriedades de Superfície , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...